Abdul KA, Swaileh KM, Hussein RM, Matani M. Levels of metals (Cd, Pb, Cu and Fe) in cow’s milk, dairy products and hen’s eggs from the West Bank, Palestine. Int Food Res J. 2012;19(3):1089–94.
Google Scholar
Ademola AK. Assessments of Natural Radioactivity and Heavy Metals in Commonly Consumed Milk in Oke-Ogun Area, Nigeria and Estimation of Health Risk Hazard to the Population. J Environ Anal Toxicol. 2014;4:253.
Google Scholar
Ahmad N, Rahimb M, Mas H. Toxocological Impact Assessement of heavy metals in human blood and milk samples collected in district Shangla. Pakistan: SciInt (Lahore); 2011.
Google Scholar
Alem G, Tesfahun K, Kassa B. Quantitative Determination of the Level of Selected Heavy Metals in the Cows’ Milk from the Dairy Farm of the Haramaya University, Eastern Ethiopia. Int J Chem Nat Sci. 2015;3(1):240–8.
Google Scholar
Ali JA, Bukar DE, Jimoh N, Hauwa NT, Yusuf N, Umar ZT. Determination of copper, zinc, lead and some biochemical parameters in fresh cow milk from different locations in Niger State, Nigeria. Afr J Food Sci. 2011;5(3):156–60.
Google Scholar
Anita S, Rajesh KS, Madhoolika A, Fiona MM. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol. 2010;48:611–9.
Article
Google Scholar
Aslam B, Javed I, Hussain KF, Ur-Rahman Z. Uptake of Heavy Metal Residues from Sewerage Sludge in the Milk of Goat and Cattle during Summer Season. Pak Vet J. 2011;31(1):75–7.
CAS
Google Scholar
BER. Bangladesh Economic Review, Ministry Of Finance. Dhaka: The Government of Bangladesh; 2007.
Google Scholar
Bushra I, Saatea A, Samina S, Riaz K. Assessment of Toxic Metals in Dairy Milk and Animal Feed in Peshawar, Pakistan. British BiotechnolJ. 2014;4(8):883–93.
Article
Google Scholar
Channa J, Priyani P, Saranga F, Mala A, Sarath G, Sisira S. Presence of arsenic in Sri Lankan rice. Int J Food Contaminat. 2015;2:1.
Article
Google Scholar
Dawd AG, Gezmu TB, Haki GD. Essential and toxic metals in cow’s whole milk from selected sub-cities in Addis Ababa, Ethiopia. Online Int J Food Sci. 2012;1(1):12–9.
Google Scholar
Degnon RG, Dahouenon-Ahoussi E, Adjou ES, Soumanou MM, Dolganova NV, Sohounhloue DCK. Heavy metal contamination of the Nokoué Lake (southern Benin) and the dynamic of their distribution in organs of some fish’s species (Mugilcephalus L. and Tilapia guineensis). J Anim Sci Adv. 2012;2(7):589–95.
CAS
Google Scholar
Dobrzañski Z, Kolacz R, Górecka H, Chojnacka K, Bartkowiak A. The content of microelements and trace elements in raw milk from cows in the Silesian region. Polish J Environ Stud. 2005;14(5):685–9.
Google Scholar
Elatrash S, Atoweir N. Determination of lead and cadmium in raw cow’s milk by graphite furnace atomic absorption spectroscopy. Int J Chem Sci. 2014;12(1):92–100.
CAS
Google Scholar
Enb A, AbouDonia MA, Abd-Rabou NS, Abou-Arab AAK, El-Senaity MH. Chemical Composition of Raw Milk and Heavy Metals Behavior During Processing of Milk Products. Global Veterinaria. 2009;3(3):268–75.
CAS
Google Scholar
European Committee for Standardization. Characterization of waste- Microwave assisted digestion wihhydrofluoric (HF), nitric (HNO3) andhydrochloric (HCl) acid mixture for subsequent determination of elements. 2002. EN 13656.
FAO/WHO. Codex Alimentarius-general standards for contaminants and toxins in food. Schedule 1 Maximum and guideline levels for contaminants and toxins in food, Joint FAO/WHO food standards programme. Rotterdam: Codex committee; 2002. Reference CX/FAC 02/16.
Google Scholar
Farag M, Mohammed H, Ayman S, Abd EF. Contamination of Cows Milk by Heavy Metal in Egypt. Bull Environ Contam Toxicol. 2012;88:611–3.
Article
Google Scholar
Farid S, Baloch MK. Heavy metal ions in milk samples collected from animals feed with city effluent irrigated fodder. Greener J Physical Sciences. 2012;2(2):36–43.
Google Scholar
Girma K, Tilahun Z, Haimanot D. Review on Milk Safety with Emphasis on Its Public Health. World J Dairy Food Sci. 2014;9(2):166–83.
Google Scholar
Hayford O, Paa TA, Nanam TD. Variations in trace metal and aflatoxin content during processing of High Quality Cassava Flour (HQCF). Int J Food Contaminat. 2016;3:1.
Article
Google Scholar
HIES (Household Income and Expenditure Survey). Preliminary report on household income and expenditure survey-2010. Dhaka, Bangladesh: Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning; 2011.
Google Scholar
Hussain Z, Nazir A, Shafique U, Salman M. Comparative study for the determination ofmetals in milk samples using Flame- AAS and EDTA complexometric titration. J Sci Res. 2010;1:55–76.
Google Scholar
Islam MS, Ahmed MK, Al-mamun MH, Masunaga S. Trace metals in soil and vegetables and associated health risk assessment. Environ Monit Assess. 2014;186:8727–39.
Article
CAS
Google Scholar
Islam MS, Kawser MA, Habibullah MAM, Shigeki M. Assessment of trace metals in foodstuffs grown around the vicinity of industries in Bangladesh. J Food Compos Anal. 2015;42:8–15.
Article
CAS
Google Scholar
Jamal HM, Fuad HM. Forecasting of Milk, Meat and Egg Production in Bangladesh. Res J Animal, Vet Fishery Sci. 2013;1(9):7–13.
Google Scholar
JECFA. Summary and conclusions of the 61st meeting of the joint FAO/WHO Expert committee on food additives (JECFA). Rome, Italy: JECFA/61/SC; 2003.
Google Scholar
Jolanta BB, Ewa S, Wiestaw Z. Determination of Major and Trace Elements in Powdered Milk by Inductively Coupled Plasma Atomic Emission Spectrometry. J Chem Anal. 1996;41:625.
Google Scholar
Khalil HM, Seliem AF. Determination of Heavy Metals (Pb, Cd) and some Trace Elements in Milk and Milk Products Collected from Najran Region in K.S.A. Life Sci J. 2013;10(2):648–52.
Google Scholar
Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut. 2008;152:686–92.
Article
CAS
Google Scholar
Lante A, Lomolino G, Cagnin M, Spettoli P. Content and characterization of minerals in milk in crescenza and squaquerone Italian fresh cheeses by ICP-OES. Food Control. 2006;17:229–33.
Article
CAS
Google Scholar
Licata P, Trombetta D, Cristani M, GiofreF MD, Calo M, Naccari F. Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ Int. 2004;30:1–6.
Article
CAS
Google Scholar
Malhat F, Hagag M, Saber A, Fayz AE. Contamination of cow’s milk by heavy metal in Egypt. Bull Environ Contam Toxicol. 2012;88(4):611–3.
Article
CAS
Google Scholar
Medhanye G, Negussie M, Abi MT. Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. Int J Food Contaminat. 2016;3:2.
Article
Google Scholar
Mohammed AGA, Abubakar Musa KE, WaleedAboshora WZ. Evaluation of some physicochemical parameters of three commercial milk products. Pak J Food Sci. 2013;23(2):62–5.
Google Scholar
Nnadozie CU, Birnin-Yauri UA, Muhammad C. Assessment of Some Diary Products Sold in Sokoto Metropolis, Nigeria. Int J Adv Res Chem Sci. 2014;1(10):31–7.
Google Scholar
Nwankwoala A, Odueyungbo S, Nyavor K, Egiebor N. Levels of 26 elements in infant formula from USA, UK and Nigeria by microwave digestion and ICP-OES. Food Chem. 2002;77(4):439–47.
Article
Google Scholar
Ogabiela EE, Udiba UU, Adesina OB, Hammuel C, Ade-Ajayi FA, Yebpella GG, Mmereole UJ, Abdullahi M. Assessment of metal levels in fresh milk from cows grazed around Challawa Industrial Estate of Kano, Nigeria. J Basic Appl Sci Res. 2011;1(7):533–8.
Google Scholar
Oliver MA. Soil and human health: A Review. Eur J Soil Sci. 1997;48:573–92.
Article
CAS
Google Scholar
Qin LQ, Wang XP, Li W, Tong WJ TX. The minerals and heavy metals in cow’s milk from China and Japan. J Health Sci. 2009;55(2):300–5.
Article
CAS
Google Scholar
Rao AN. Trace element estimation: methods and clinical context.Online. J Health Allied Sci. 2005;4(1):1–9.
Google Scholar
Rubina P, Abbas B, Darakhshan A, Shahid SS, Qamar-ul H. Elucidation of physico-chemical characteristics and mycoflora of bovine milk available in selected area of Karachi, Pakistan. J Appl Sci Environ Manag. 2013;17(2):259–65.
Google Scholar
Ruqia N, Muslim K, Hameed UR, Zubia M, Muhammad M, Rumana S, Naila G, Faryal S, Irum P, Fathma S, Muhammad Z, Noor UA, Nelofer J. Elemental Assessment of Various Milk Packs Collected From KPK, Pakistan. Am-Eurasian J Toxicol Sci. 2015;7(3):157–61.
Google Scholar
Salah F, Ahmed AEA. Assessment of Toxic Heavy Metals in Some Dairy Products and the Effect of Storage on its Distribution. J Ameri Sci. 2012;8(8):665–70.
Google Scholar
Salah AEA, Esmat AI, Rania MKM. Prevalence of Some Trace and Toxic Elements in Raw and Sterilized Cow’s Milk. J Am Sci. 2012;8(9):753–61.
Google Scholar
Salah FA, Esmat IA, Mohamed AB. Heavy metals residues and trace elements in milk powder marketed in DakahliaGovernorate. Int Food ResJ. 2013;20(4):1807–12.
Google Scholar
Seyed MD, Ebrahim R. Determination of Lead Residue in Raw Cow Milk from Different Regions of Iran by Flameless Atomic Absorption Spectrometry. Am-Eurasian J Toxicol Sci. 2012;4(1):16–9.
Google Scholar
Shahriar SMS, Akther S, Akter F, Morshed S, AlamMK SI, Halim MA, Hassan MM. Concentration of Copper and Lead in Market Milk Concentration of Copper and Lead in Market Milk. Int Letters Chem, Phys Astro. 2014;27:56–63.
Article
Google Scholar
Solidum JN, Burgos SG, dela Cruz KM, Padilla R. A Quantitative Analysis on Cadmium and Chromium Contamination in Powdered Children’s Milk. Metro Manila, Philippines: International Conference on Environment and Bioscience; 2012.
Google Scholar
Sridhara Chary N, Kamala CT, Samuel Suman Raj D. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf. 2008;69:513–24.
Article
Google Scholar
Tassew B, Ahmed H, Vegi MR. Determination of Concentrations of Selected Heavy Metals in Cow’s Milk. J Health Sci. 2014;4(5):105–12.
Google Scholar
USEPA. Risk-based Concentration Table US Environmental Protection Agency Washington. DC/Philadelphia: PA; 2000.
Google Scholar
USEPA. USEPA Region III Risk-Based Concentration Table: Technical Back-ground Information. Washington: Unites States Environmental Protection Agency; 2006.
Google Scholar
USEPA (2010) Risk Based Concentration Table. Available from: http://www.epa.gov/reg3hwmd/risk/human/index.htm.
Vegarud GE, Landsrud T, Svaning C. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br J Nutr. 2000;84:91–8.
Article
Google Scholar
Yahaya MI, Ezo GC, Musa YF, Muhamad SY. Analysis of heavy metals concentration in roadside soils in Yauri, Nigeria. Afr J Pure Appl Chem. 2010;4(3):022–30.
CAS
Google Scholar
Yuzbas I, Sezgin NE, Yldrm Z, Yldrm M. Changes In Pb, Cd, Fe, Cu and Zn Levels during the Production of Kasar Cheese. J Food Qual. 2009;32:73–83.
Article
Google Scholar
Zodape GV, Dhawan VL, Wagh RR. Determination of Metals in Cow Milk Collected From Mumbai City, India. Srilanka: Eco Revolution Colombo; 2012. p. 270–4.
Google Scholar