Milk is virtually a sterile fluid when secreted into alveoli of udder. However, post-harvest handling like the milking personnel and milk handling containers might generally be source of microbial contamination for raw milk, the three main sources of bacterial contamination; within the udder, exterior to the udder from the surface of teats, milk handling and storage equipments (Abate et al. 2015: Reta et al. 2016).
On average, aseptically drawn milk from healthy udders contains between 500 and 1000 bacteria per ml. But in our study only 5% of individual cows sampled directly from teat had the total bacterial count (TBC) of <1000 cfu/ml which indicates microbiological quality of the raw milk was very poor when compared with Theodore et al. (2016), which reported 95% of the cow milk with TBC <1000 cfu/ml from western Zambia. According to European milk bacteriology standards and USA legal limits for milk collected on the farm level (<100,000 cfu/ml) only 26.70% of the samples can fit this standard. But 73.30% of the milk samples were found high initial counts (>100,000 bacteria per ml), evidence of poor milk hygiene when compared to international standards.
In this study udder milk, had a better bacteriological quality because it was not subjected to further contamination after milking. The milk produced under hygienic conditions from healthy cows should not contain more than 4.7 log10 cfu/ml (O’Connor 1994). The current study revealed mean bacterial counts lower than this standard in which the mean ± standard error (SE) bacterial count was 4.59 ± 0.12 log10 cfu/ml from milk collected directly from teat and 4.77 + 0.23 log10 cfu/ml in milk collected from milking buckets slightly higher than the standard given. This result is also much lower than the findings of Worku et al. (2012) and Yilma (2012) about 7.59 log10 cfu/ml and 8.87log10 cfu/ml respectively. Even if the means of bacterial counts seem to be lower than the standards given, more than 42% from all samples were found to have greater log10 bacteria counts than the standard stated.
In this study, an increase in the bacterial counts between the two milk collection points which indicates decreasing of the hygienic conditions between milk collection points. Based on the linear regression analysis which was performed to investigate whether certain identified factors i.e., farmers’ hygienic practices contributed to the bacteriological quality of the milk or total bacterial counts from raw milk directly from teats and collecting buckets. Udder cleaning, Water and soap using for cleaning of udder, hand washing and Water and soap using for milking vessels were found to be significantly (P < 0.05) affecting the standard plate counts. This is in agreement with the study up on the hygiene measures on raw milk by Abdalla and Elhagaz (2011) in Khartoum state, Sudan who showed that there was a significant effect on application of hygiene practices prior to milking in total bacterial count. Generally, this implies that the sanitary conditions in which milk has been produced and handled are substandard subjecting the product to microbial contamination and multiplication due to lack of and improper cooling systems at milk vending area. It is indicated that total bacterial count is a good indicator for monitoring the sanitary conditions practiced during production, collection, and handling of raw milk (Fatine et al. 2012).
In developing countries like Ethiopia, where high prevalence of clinical and subclinical mastitis mainly caused by S. aureus (Sori 2011) and high consumption of raw milk is common, Staphylococcal Food Poisoning (SFP) the most important target for study as risk of milk borne contaminations. Now days, it is not uncommon to here an extensive outbreak of staphylococcal food poisoning reports from both developed and developing nations from raw milk, powdered skim milk and reconstituted milks (Asao et al. 2003; Ikeda et al. 2005 and Johler et al. 2015). But in Ethiopia SFP outbreak investigations, identification of the causative strain are challenging and scarce data/or information available to estimate its magnitude may be due to limited commercial kits available for diagnosis of causative strains and of enterotoxins (SEs) and week disease outbreak investigation capacity.
Out of 60 samples of raw milk collected directly from teat and 12 collected from milking buckets, 18.33 and 25% were contaminated by Staphylococcus aureus respectively, with averages varying between 2.20×10 to 7.56×102cfu/mL, as shown in Table 3. The result is higher than the figure studied by Worku et al. (2012), which was only 7. 29%. Other lower results were also reported by Shunda et al. (2013) in which about 13.3% of samples were positive for S. aureus. According to Wallace (2009), even if the presence S. aureus in milk is known to cause spoilage of raw milk, it is not thought to be a frequent contributor to total collecting buckets counts and also he found that this organism is mainly associated with contagious mastitis.
Equipment used for milking, collecting and storage determine the quality of milk and milk products. The use of plastic, tins and traditional containers (clay pots and Bottle gourd) are the dominants in most part of Ethiopia which can be a potential source for the contamination of milk by bacteria, because these allow the multiplication of bacteria on milk contact surfaces during the milking process and their difficult nature for cleaning is also very crucial for contamination of milk. The result in this study also confirmed that 73.30% farmers use plastic containers for milking and collecting milk which can be compared with findings of Abate et al. (2015) which showed over 60% of farms used plastic containers and 40% used pots for milking and collecting milk. Higher figures were also reported by Yilma (2012) in which 81% use plastics the remaining 3.4 and 6.6% used tins and pots respectively.
Maintaining the sanitary condition of milking area is important for the production of good quality milk. The current study showed that about 88.3% of the farms clean the house more than twice per week usually on daily bases but 11.7% of the farms clean the barn twice per week due to shortage of water. Other study Yilma (2012) in Addis Ababa, reported that about 87% of the respondents cleaned their barn on daily basis, while few (9%) of them cleaned only once or twice a week. Contrary to this study Abebe et al. (2012) showed low proportion (47%) of the respondents cleaned the barn three times a week, while 39% cleaned two times and only 11.7% of them reported to clean daily Abate et al. (2015) also report more than 90% farms cleaned their houses once daily.
The study also shows 75% of respondents did not use udder washing before milking and only about 25% of respondents had washed the udder before milking reports. Contrary to the current findings of Weldaragay et al. (2012) in Hawasa reported that >80% households practicing pre milking udder washing (FSA [Food Standards Agency] 2006) reported cleaning of the udder before milking is important to remove both visible dirt and bacteria from the outer surface of the udder and to minimize contamination and produce good quality milk. Cleaning agent used for cleaning the udder in this study was only water with no any detergents. This result has an agreement with the study in Shashemene by Gemechu et al.(2014) in which most of the farms didn’t use detergents for cleaning udder but only 2% reported by (Abate et al. 2015).
In this study about 71.1% of farms participated in the survey didn’t use separate towels almost similar to the figures (71.79 and 71.0%) found by Gemechu et al. (2014). Hand washing practice before milking of cows in the current study is assessed to be about 68.3% which is not satisfactory with respect to keep the quality of milk. This result is lower than the reports in Jimma (>94%) by Yilma (2012). Most of (98.3%) of the dairy cow owners used water and detergent for cleaning milk handling equipment which is in agreement with the reports of Weldaragay et al. (2012).