ACE. Fit facts: healthy hydration. In: American Council on Exercise. 2008.
Google Scholar
Aguilar MV, Martinez MC, Masoud TA. Arsenic content in some Spanish wines Influence of the wine-making technique on arsenic content in musts and wines. Z Lebensm Unters Forsch. 1987;185:185–7.
Article
CAS
Google Scholar
Ajtony Z, Szoboszlai N, Suskó EK, Mezei P, György K, Bencs L. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta. 2008;76:627–34.
Article
CAS
Google Scholar
Almeida CMR, Vasconcelos MTS. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J Agric Food Chem. 2003;51:4788–98.
Article
CAS
Google Scholar
ATSDR. Toxicological profile for lead. In: U.S. Department of Health and Human Services: agency for toxic substances and disease registry. 2007.
Google Scholar
ATSDR. Agency for toxic substances and disease registry case studies in environmental medicine (CSEM) lead toxicity. 2012.
Google Scholar
Aydin I, Yuksel U, Guzel R, Ziyadanogullari B, Aydin F. Determination of trace elements in Turkish wines by ICP-OES and HG-ICP-OES. At Spectrosc. 2010;31:67.
Google Scholar
Beier EE, Maher JR, Sheu T-J, Cory-Slechta DA, Berger AJ, Zuscik MJ, Puzas JE. Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. Environ Health Perspect (Online). 2013;121:97.
Article
Google Scholar
Bertoldi D, Larcher R, Bertamini M, Otto S, Concheri G, Nicolini G. Accumulation and distribution pattern of macro-and microelements and trace elements in Vitis vinifera L. cv. Chardonnay berries. J Agric Food Chem. 2011;59:7224–36.
Article
CAS
Google Scholar
Birgisdottir B, Knutsen H, Haugen M, Gjelstad I, Jenssen M, Ellingsen D, Thomassen Y, Alexander J, Meltzer H, Brantsæter A. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game. Sci Total Environ. 2013;463:836–44.
Article
Google Scholar
Bora F-D, Bunea C-I, Rusu T, Pop N. Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania. Chem Cent J. 2015;9:1.
Article
CAS
Google Scholar
Catarino S, Curvelo-Garcia A, de Sousa RB. Measurements of contaminant elements of wines by inductively coupled plasma-mass spectrometry: a comparison of two calibration approaches. Talanta. 2006;70:1073–80.
Article
CAS
Google Scholar
Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia A, De Sousa RB. Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem. 2007;56:158–65.
Article
Google Scholar
CDC. Fourth national report on human exposure to environmental chemicals, updated tables. In: National Center for Environmental Health Division of Laboratory Sciences. 2015.
Google Scholar
da Costa AS, Delgadillo I, Rudnitskaya A. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system. Talanta. 2014;129:63–71.
Article
Google Scholar
Dessuy MB, Vale MGR, Souza AS, Ferreira SL, Welz B, Katskov DA. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Talanta. 2008;74:1321–9.
Article
CAS
Google Scholar
Dessuy MB, Vale MGR, Welz B, Borges AR, Silva MM, Martelli PB. Determination of cadmium and lead in beverages after leaching from pewter cups using graphite furnace atomic absorption spectrometry. Talanta. 2011;85:681–6.
Article
CAS
Google Scholar
DHHS. Dietary guidelines for Americans 2005. In: U.S. Department of Health and Human Services - U.S. Department of Agriculture. 2005. www.healthierus.gov/dietaryguidelines.
Google Scholar
Elçi L, Arslan Z, Tyson JF. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry. J Hazard Mater. 2009;162:880–5.
Article
Google Scholar
Elinder C, Lind B, Nilsson B, Oskarsson A. Wine—an important source of lead exposure. Food Addit Contam. 1988;5:641–4.
Article
CAS
Google Scholar
EPA. Guidelines for exposure assessment: EPA/600/Z-92/001. In: Federal Register 57 (104). 1992.
Google Scholar
EPA. Review of adult lead models evaluation of models for assessing human health risks associated with lead exposures at non-residential areas of superfund and other hazardous waste sites. In: U.S. environmental protection agency: office of solid waste and emergency response. 2001.
Google Scholar
EPA. Exposure factors handbook: 2011 edition. In: EPA/600/R-090/052F U.S. environmental protection agency: office of research and development. 2011.
Google Scholar
EPA. EPA response to scientific views from the public on draft updated national recommended water quality criteria for the protection of human health. Docket ID No. EPA-HQ-OW-2014-0135). In: EPA 822-R-15-001 Office of Water and Office of Science and Technology. 2015.
Google Scholar
Geana I, Iordache A, Ionete R, Marinescu A, Ranca A, Culea M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013;138:1125–34.
Article
CAS
Google Scholar
Gonzalvez A, Armenta S, Pastor A, De La Guardia M. Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques. J Agric Food Chem. 2008;56:4943–54.
Article
CAS
Google Scholar
Greenough J, Longerich H, Jackson S. Element fingerprinting of Okanagan Valley wines using ICP‐MS: relationships between wine composition, vineyard and wine colour. Aust J Grape Wine Res. 1997;3:75–83.
Article
CAS
Google Scholar
Grindlay G, Mora J, Maestre S, Gras L. Application of a microwave-based desolvation system for multi-elemental analysis of wine by inductively coupled plasma based techniques. Anal Chim Acta. 2008;629:24–37.
Article
CAS
Google Scholar
Grindlay G, Mora J, Gras L, de Loos-Vollebregt MT. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry. Anal Chim Acta. 2009;652:154–60.
Article
CAS
Google Scholar
Haelle T. Arsenic and california wine: do you need to worry? Forbes; 2015. https://www.forbes.com/sites/tarahaelle/2015/03/23/arsenic-and-california-wine-do-you-need-toworry/#44d079107f3e.
Hague T, Petroczi A, Andrews PL, Barker J, Naughton DP. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study. Chem Cent J. 2008;2:1–9.
Article
Google Scholar
Iglesias M, Besalú E, Anticó E. Internal standardization-atomic spectrometry and geographical pattern recognition techniques for the multielement analysis and classification of Catalonian red wines. J Agric Food Chem. 2007;55:219–25.
Article
CAS
Google Scholar
Illuminati S, Annibaldi A, Truzzi C, Scarponi G. Recent temporal variations of trace metal content in an Italian white wine. Food Chem. 2014;159:493–7.
Article
CAS
Google Scholar
Karadjova IB, Lampugnani L, D’Ulivo A, Onor M, Tsalev D. Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate (III). Anal Bioanal Chem. 2007;388:801–7.
Article
CAS
Google Scholar
Klassen C. Casarett & Doull’s Toxicology: the basic science of poisons, eighth edition. New York: McGraw-Hill Education; 2013.
Google Scholar
Kristensen LJ, Taylor MP, Evans AJ. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine. Chemosphere. 2016;154:40–7.
Article
CAS
Google Scholar
La Pera L, Dugo G, Rando R, Di Bella G, Maisano R, Salvo F. Statistical study of the influence of fungicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine. Food Addit Contam. 2008;25:302–13.
Article
Google Scholar
Lara R, Cerutti S, Salonia J, Olsina R, Martinez L. Trace element determination of Argentine wines using ETAAS and USN-ICP-OES. Food Chem Toxicol. 2005;43:293–7.
Article
CAS
Google Scholar
Leggett RW. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993;101:598.
Article
CAS
Google Scholar
Mahaffey KR. Environmental lead toxicity: nutrition as a component of intervention. Environ Health Perspect. 1990;89:75.
Article
CAS
Google Scholar
McCabe EB. Age and sensitivity to lead toxicity: a review. Environ Health Perspect. 1979;29:29.
Article
CAS
Google Scholar
Monnot AD, Christian WV, Abramson MM, Follansbee MH. An exposure and health risk assessment of lead (Pb) in lipstick. Food Chem Toxicol. 2015;80:253–60.
Article
CAS
Google Scholar
Monnot AD, Tvermoes BE, Gerads R, Gürleyük H, Paustenbach D. Risks associated with arsenic exposure resulting from the consumption of California wines sold in the United States. Food Chem. 2016;211:107–13.
Article
CAS
Google Scholar
Moreno IM, González-Weller D, Gutierrez V, Marino M, Cameán AM, González AG, Hardisson A. Differentiation of two Canary DO red wines according to their metal content from inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry by using probabilistic neural networks. Talanta. 2007;72:263–8.
Article
CAS
Google Scholar
Mushak P. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions. Sci Total Environ. 2003;303:35–50.
Article
CAS
Google Scholar
Needleman H. Lead poisoning. Annu Rev Med. 2004;55:209–22.
Article
CAS
Google Scholar
NIOSH. Adult blood lead epidemiology and surveillance (ABLES). Center for Disease Control and Prevention; 2015. https://www.cdc.gov/niosh/topics/ables/description.html.
O’Flaherty EJ. Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol Sci. 2000;55:171–88.
Article
Google Scholar
OIV. Annex: maximum acceptable limits. In: International code of oenological practices: OIV code sheet - issue 2015/01. 2015a.
Google Scholar
OIV. Global economic vitiviniculture data: press release. 2015b.
Google Scholar
Onalaja AO, Claudio L. Genetic susceptibility to lead poisoning. Environ Health Perspect. 2000;108:23.
Article
CAS
Google Scholar
Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit. 2005;11:RA329–36.
CAS
Google Scholar
Patrick L. Lead toxicity, a review of the literature. part I: exposure, evaluation, and treatment. Altern Med Rev. 2006;11:2–23.
Google Scholar
Paustenbach DJ, Insley AL, Maskrey JR, Bare JL, Unice KM, Conrad VB, Iordanidis L, Reynolds DW, DiNatale KS, Monnot AD. Analysis of total arsenic content in california wines and comparison to various health risk criteria. Am J Enol Vitic. 2016;2015:15041.
Google Scholar
Permissible limits for chemical analysis: VQA Ontario - regulations - standards. 2016. Available from http://www.vqaontario.ca/Regulations/Standards. Accessed 4 Oct 2016.
Philip AT, Gerson B. Lead poisoning--part I. Incidence, etiology, and toxicokinetics. Clin Lab Med. 1994;14:423–44.
CAS
Google Scholar
Pyrzyńska K. Analytical methods for the determination of trace metals in wine. Crit Rev Anal Chem. 2004;34:69–83.
Article
Google Scholar
Santos S, Lapa N, Alves A, Morais J, Mendes B. Analytical methods and validation for determining trace elements in red wines. J Environ Sci Health B. 2013;48:364–75.
Article
CAS
Google Scholar
Schiavo D, Neira JY, Nóbrega JA. Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectrometry. Talanta. 2008;76:1113–8.
Article
CAS
Google Scholar
Tagne-Fotso R, Leroyer A, Howsam M, Dehon B, Richeval C, Nisse C. Current sources of lead exposure and their relative contributions to the blood lead levels in the general adult population of Northern France: the IMEPOGE study, 2008–2010. J Toxic Environ Health A. 2016;79:245–65.
Article
CAS
Google Scholar
Tariba B, Pizent A, Kljaković-Gašpić Z. Determination of lead in Croatian wines by graphite furnace atomic absorption spectrometry. Arch Ind Hyg Toxicol. 2011;62:25–31.
CAS
Google Scholar
Tvermoes BE, Banducci AM, Devlin KD, Kerger BD, Abramson MM, Bebenek IG, Monnot AD. Screening level health risk assessment of selected metals in apple juice sold in the United States. Food Chem Toxicol. 2014;71:42–50.
Article
CAS
Google Scholar
Vystavna Y, Rushenko L, Diadin D, Klymenko O, Klymenko M. Trace metals in wine and vineyard environment in southern Ukraine. Food Chem. 2014;146:339–44.
Article
CAS
Google Scholar
Wilson D. Arsenic content in American wine. J Environ Health. 2015;78:16.
CAS
Google Scholar
Wu H, Jin Y, Luo M, Bi S. A simple and sensitive flow-injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for the determination of ultra-trace lead in water, wine, and rice. Anal Sci. 2007;23:1109–12.
Article
CAS
Google Scholar
Yamasaki A, Oliveira JA, Duarte AC, Gomes MTS. An insight into the adsorption and electrochemical processes occurring during the analysis of copper and lead in wines, using an electrochemical quartz crystal nanobalance. Talanta. 2012;98:14–8.
Article
CAS
Google Scholar
Yang Y, Duan C, Du H, Tian J, Pan Q. Trace element and rare earth element profiles in berry tissues of three grape cultivars. Am J Enol Vitic. 2010;61:401–7.
CAS
Google Scholar
Yıldız O, Citak D, Tuzen M, Soylak M. Determination of copper, lead and iron in water and food samples after column solid phase extraction using 1-phenylthiosemicarbazide on Dowex Optipore L-493 resin. Food Chem Toxicol. 2011;49:458–63.
Article
Google Scholar